z-logo
open-access-imgOpen Access
Evidence for a general performance‐monitoring system in the human brain
Author(s) -
Zubarev Ivan,
Parkkonen Lauri
Publication year - 2018
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24273
Subject(s) - magnetoencephalography , electroencephalography , sensory system , action (physics) , neuroscience , psychology , computer science , motor system , brain activity and meditation , surprise , human brain , probabilistic logic , artificial intelligence , communication , physics , quantum mechanics
Adaptive behavior relies on the ability of the brain to form predictions and monitor action outcomes. In the human brain, the same system is thought to monitor action outcomes regardless of whether the information originates from internal (e.g., proprioceptive) and external (e.g., visual) sensory channels. Neural signatures of processing motor errors and action outcomes communicated by external feedback have been studied extensively; however, the existence of such a general action‐monitoring system has not been tested directly. Here, we use concurrent EEG‐MEG measurements and a probabilistic learning task to demonstrate that event‐related responses measured by electroencephalography and magnetoencephalography display spatiotemporal patterns that allow an effective transfer of a multivariate statistical model discriminating the outcomes across the following conditions: (a) erroneous versus correct motor output, (b) negative versus positive feedback, (c) high‐ versus low‐surprise negative feedback, and (d) erroneous versus correct brain–computer‐interface output. We further show that these patterns originate from highly‐overlapping neural sources in the medial frontal and the medial parietal cortices. We conclude that information about action outcomes arriving from internal or external sensory channels converges to the same neural system in the human brain, that matches this information to the internal predictions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here