
Mind over motor mapping: Driver response to changing vehicle dynamics
Author(s) -
Bruno Jennifer L.,
Baker Joseph M.,
Gundran Andrew,
Harbott Lene K.,
Stuart Zachary,
Piccirilli Aaron M.,
Hosseini S. M. Hadi,
Gerdes J. Christian,
Reiss Allan L.
Publication year - 2018
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.24220
Subject(s) - workload , task (project management) , psychology , poison control , neuroscience , computer science , cognitive psychology , engineering , medicine , systems engineering , operating system , environmental health
Improvements in vehicle safety require understanding of the neural systems that support the complex, dynamic task of real‐world driving. We used functional near infrared spectroscopy (fNIRS) and pupilometry to quantify cortical and physiological responses during a realistic, simulated driving task in which vehicle dynamics were manipulated. Our results elucidate compensatory changes in driver behavior in response to changes in vehicle handling. We also describe associated neural and physiological responses under different levels of mental workload. The increased cortical activation we observed during the late phase of the experiment may indicate motor learning in prefrontal–parietal networks. Finally, relationships among cortical activation, steering control, and individual personality traits suggest that individual brain states and traits may be useful in predicting a driver's response to changes in vehicle dynamics. Results such as these will be useful for informing the design of automated safety systems that facilitate safe and supportive driver–car communication.