z-logo
open-access-imgOpen Access
Motor imagery training: Kinesthetic imagery strategy and inferior parietal f MRI activation
Author(s) -
Lebon Florent,
Horn Ulrike,
Domin Martin,
Lotze Martin
Publication year - 2018
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.23956
Subject(s) - kinesthetic learning , motor imagery , psychology , mental image , contrast (vision) , functional magnetic resonance imaging , training (meteorology) , audiology , physical medicine and rehabilitation , cognition , artificial intelligence , neuroscience , developmental psychology , brain–computer interface , medicine , electroencephalography , computer science , physics , meteorology
Motor imagery (MI) is the mental simulation of action frequently used by professionals in different fields. However, with respect to performance, well‐controlled functional imaging studies on MI training are sparse. We investigated changes in fMRI representation going along with performance changes of a finger sequence (error and velocity) after MI training in 48 healthy young volunteers. Before training, we tested the vividness of kinesthetic and visual imagery. During tests, participants were instructed to move or to imagine moving the fingers of the right hand in a specific order. During MI training, participants repeatedly imagined the sequence for 15 min. Imaging analysis was performed using a full‐factorial design to assess brain changes due to imagery training. We also used regression analyses to identify those who profited from training (performance outcome and gain) with initial imagery scores (vividness) and fMRI activation magnitude during MI at pre‐test (MI pre ). After training, error rate decreased and velocity increased. We combined both parameters into a common performance index. FMRI activation in the left inferior parietal lobe (IPL) was associated with MI and increased over time. In addition, fMRI activation in the right IPL during MI pre was associated with high initial kinesthetic vividness. High kinesthetic imagery vividness predicted a high performance after training. In contrast, occipital activation, associated with visual imagery strategies, showed a negative predictive value for performance. Our data echo the importance of high kinesthetic vividness for MI training outcome and consider IPL as a key area during MI and through MI training.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here