z-logo
open-access-imgOpen Access
The morphometric co‐atrophy networking of schizophrenia, autistic and obsessive spectrum disorders
Author(s) -
Cauda Franco,
Nani Andrea,
Costa Tommaso,
Palermo Sara,
Tatu Karina,
Manuello Jordi,
Duca Sergio,
Fox Peter T.,
Keller Roberto
Publication year - 2018
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.23952
Subject(s) - neuroscience , atrophy , schizophrenia (object oriented programming) , psychology , thalamus , connectomics , psychosis , autism spectrum disorder , functional connectivity , connectome , medicine , psychiatry , autism , pathology
Abstract By means of a novel methodology that can statistically derive patterns of co‐alterations distribution from voxel‐based morphological data, this study analyzes the patterns of brain alterations of three important psychiatric spectra—that is, schizophrenia spectrum disorder (SCZD), autistic spectrum disorder (ASD), and obsessive‐compulsive spectrum disorder (OCSD). Our analysis provides five important results. First, in SCZD, ASD, and OCSD brain alterations do not distribute randomly but, rather, follow network‐like patterns of co‐alteration. Second, the clusters of co‐altered areas form a net of alterations that can be defined as morphometric co‐alteration network or co‐atrophy network (in the case of gray matter decreases). Third, within this network certain cerebral areas can be identified as pathoconnectivity hubs , the alteration of which is supposed to enhance the development of neuronal abnormalities. Fourth, within the morphometric co‐atrophy network of SCZD, ASD, and OCSD, a subnetwork composed of eleven highly connected nodes can be distinguished. This subnetwork encompasses the anterior insulae, inferior frontal areas, left superior temporal areas, left parahippocampal regions, left thalamus and right precentral gyri. Fifth, the co‐altered areas also exhibit a normal structural covariance pattern which overlaps, for some of these areas (like the insulae), the co‐alteration pattern. These findings reveal that, similarly to neurodegenerative diseases, psychiatric disorders are characterized by anatomical alterations that distribute according to connectivity constraints so as to form identifiable morphometric co‐atrophy patterns.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here