z-logo
open-access-imgOpen Access
The effects of memory training on behavioral and microstructural plasticity in young and older adults
Author(s) -
de Lange AnnMarie Glasø,
Bråthen Anne Cecilie Sjøli,
Rohani Darius A.,
Grydeland Håkon,
Fjell Anders M.,
Walhovd Kristine B.
Publication year - 2017
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.23756
Subject(s) - psychology , young adult , corpus callosum , cingulum (brain) , white matter , fractional anisotropy , developmental psychology , neuroscience , medicine , magnetic resonance imaging , radiology
Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017 . © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here