
Functional hypergraph uncovers novel covariant structures over neurodevelopment
Author(s) -
Gu Shi,
Yang Muzhi,
Medaglia John D.,
Gur Ruben C.,
Gur Raquel E.,
Satterthwaite Theodore D.,
Bassett Danielle S.
Publication year - 2017
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.23631
Subject(s) - default mode network , hypergraph , computer science , human brain , bipartite graph , perspective (graphical) , topology (electrical circuits) , network topology , neuroscience , intraparietal sulcus , functional connectivity , psychology , theoretical computer science , artificial intelligence , graph , mathematics , functional magnetic resonance imaging , computer network , discrete mathematics , combinatorics
Brain development during adolescence is marked by substantial changes in brain structure and function, leading to a stable network topology in adulthood. However, most prior work has examined the data through the lens of brain areas connected to one another in large‐scale functional networks. Here, we apply a recently developed hypergraph approach that treats network connections (edges) rather than brain regions as the unit of interest, allowing us to describe functional network topology from a fundamentally different perspective. Capitalizing on a sample of 780 youth imaged as part of the Philadelphia Neurodevelopmental Cohort, this hypergraph representation of resting‐state functional MRI data reveals three distinct classes of subnetworks (hyperedges): clusters, bridges, and stars, which respectively represent homogeneously connected, bipartite, and focal architectures. Cluster hyperedges show a strong resemblance to previously‐described functional modules of the brain including somatomotor, visual, default mode, and salience systems. In contrast, star hyperedges represent highly localized subnetworks centered on a small set of regions, and are distributed across the entire cortex. Finally, bridge hyperedges link clusters and stars in a core–periphery organization. Notably, developmental changes within hyperedges are ordered in a similar core–periphery fashion, with the greatest developmental effects occurring in networked hyperedges within the functional core. Taken together, these results reveal a novel decomposition of the network organization of human brain, and further provide a new perspective on the role of local structures that emerge across neurodevelopment. Hum Brain Mapp 38:3823–3835, 2017 . © 2017 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.