z-logo
open-access-imgOpen Access
Evolution of deep gray matter volume across the human lifespan
Author(s) -
Narvacan Karl,
Treit Sarah,
Camicioli Richard,
Martin Wayne,
Beaulieu Christian
Publication year - 2017
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.23604
Subject(s) - globus pallidus , putamen , cohort , psychology , longitudinal study , caudate nucleus , basal ganglia , nucleus accumbens , magnetic resonance imaging , neuroscience , medicine , pathology , central nervous system , radiology
Magnetic resonance imaging of subcortical gray matter structures, which mediate behavior, cognition and the pathophysiology of several diseases, is crucial for establishing typical maturation patterns across the human lifespan. This single site study examines T1‐weighted MPRAGE images of 3 healthy cohorts: (i) a cross‐sectional cohort of 406 subjects aged 5–83 years; (ii) a longitudinal neurodevelopment cohort of 84 subjects scanned twice approximately 4 years apart, aged 5–27 years at first scan; and (iii) a longitudinal aging cohort of 55 subjects scanned twice approximately 3 years apart, aged 46–83 years at first scan. First scans from longitudinal subjects were included in the cross‐sectional analysis. Age‐dependent changes in thalamus, caudate, putamen, globus pallidus, nucleus accumbens, hippocampus, and amygdala volumes were tested with Poisson, quadratic, and linear models in the cross‐sectional cohort, and quadratic and linear models in the longitudinal cohorts. Most deep gray matter structures best fit to Poisson regressions in the cross‐sectional cohort and quadratic curves in the young longitudinal cohort, whereas the volume of all structures except the caudate and globus pallidus decreased linearly in the longitudinal aging cohort. Males had larger volumes than females for all subcortical structures, but sex differences in trajectories of change with age were not significant. Within subject analysis showed that 65%–80% of 13–17 year olds underwent a longitudinal decrease in volume between scans (∼4 years apart) for the putamen, globus pallidus, and hippocampus, suggesting unique developmental processes during adolescence. This lifespan study of healthy participants will form a basis for comparison to neurological and psychiatric disorders. Hum Brain Mapp 38:3771–3790, 2017 . © 2017 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here