z-logo
open-access-imgOpen Access
Taking the brakes off the learning curve
Author(s) -
Gheysen Freja,
Lasne Gabriel,
PélégriniIssac Mélanie,
Albouy Genevieve,
Meunier Sabine,
Benali Habib,
Doyon Julien,
Popa Traian
Publication year - 2017
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.23489
Subject(s) - cerebellum , neuroscience , motor learning , cerebellar hemisphere , psychology , stimulation , sequence learning
Motor learning is characterized by patterns of cerebello‐striato‐cortical activations shifting in time, yet the early dynamic and function of these activations remains unclear. Five groups of subjects underwent either continuous or intermittent theta‐burst stimulation of one cerebellar hemisphere, or no stimulation just before learning a new motor sequence during fMRI scanning. We identified three phases during initial learning: one rapid, one slow, and one quasi‐asymptotic performance phase. These phases were not changed by left cerebellar stimulation. Right cerebellar inhibition, however, accelerated learning and enhanced brain activation in critical motor learning‐related areas during the first phase, continuing with reduced brain activation but high‐performance in late phase. Right cerebellar excitation did not affect the early learning process, but slowed learning significantly in late phase, along with increased brain activation. We conclude that the right cerebellum is a key factor coordinating other neuronal loops in the early acquisition of an explicit motor sequential skill. Hum Brain Mapp 38:1676–1691, 2017 . © 2016 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here