z-logo
open-access-imgOpen Access
A geometric correction scheme for spatial leakage effects in MEG/EEG seed‐based functional connectivity mapping
Author(s) -
Wens Vincent,
Marty Brice,
Mary Alison,
Bourguig Mathieu,
Op de Beeck Marc,
Goldman Serge,
Van Bogaert Patrick,
Peigneux Philippe,
De Tiège Xavier
Publication year - 2015
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.22943
Subject(s) - orthogonalization , magnetoencephalography , electroencephalography , leakage (economics) , pattern recognition (psychology) , computer science , artificial intelligence , mathematics , algorithm , neuroscience , psychology , economics , macroeconomics
Spatial leakage effects are particularly confounding for seed‐based investigations of brain networks using source‐level electroencephalography (EEG) or magnetoencephalography (MEG). Various methods designed to avoid this issue have been introduced but are limited to particular assumptions about its temporal characteristics. Here, we investigate the usefulness of a model‐based geometric correction scheme (GCS) to suppress spatial leakage emanating from the seed location. We analyze its properties theoretically and then assess potential advantages and limitations with simulated and experimental MEG data (resting state and auditory‐motor task). To do so, we apply Minimum Norm Estimation (MNE) for source reconstruction and use variation of error parameters, statistical gauging of spatial leakage correction and comparison with signal orthogonalization. Results show that the GCS has a local (i.e., near the seed) effect only, in line with the geometry of MNE spatial leakage, and is able to map spatially all types of brain interactions, including linear correlations eliminated after signal orthogonalization. Furthermore, it is robust against the introduction of forward model errors. On the other hand, the GCS can be affected by local overcorrection effects and seed mislocation. These issues arise with signal orthogonalization too, although significantly less extensively, so the two approaches complement each other. The GCS thus appears to be a valuable addition to the spatial leakage correction toolkits for seed‐based FC analyses in source‐projected MEG/EEG data. Hum Brain Mapp 36:4604–4621, 2015 . © 2015 Wiley Periodicals, Inc .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here