
Multicenter mapping of structural network alterations in autism
Author(s) -
Valk Sofie L.,
Di Martino Adriana,
Milham Michael P.,
Bernhardt Boris C.
Publication year - 2015
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.22776
Subject(s) - precuneus , autism , neuroscience , prefrontal cortex , posterior cingulate , psychology , autism spectrum disorder , cognition , neurodevelopmental disorder , cortex (anatomy) , developmental psychology
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions primarily characterized by abnormalities in social cognition. Abundant previous functional MRI studies have shown atypical activity in networks encompassing medial prefrontal cortex (mPFC) and medial parietal regions corresponding to posterior cingulate cortex and precuneus (PCC/PCU). Conversely, studies assessing structural brain anomalies in ASD have been rather inconsistent. The current work evaluated whether structural changes in ASD can be reliability detected in a large multicenter dataset. Our comprehensive structural MRI framework encompassed cortical thickness mapping and structural covariance analysis based on three independent samples comprising individuals with ASD and controls ( n = 220), selected from the Autism Brain Imaging Data Exchange open‐access database. Surface‐based analysis revealed increased cortical thickness in ASD relative to controls in mPFC and lateral prefrontal cortex. Clusters encompassing mPFC were embedded in altered inter‐regional covariance networks, showing decreased covariance in ASD relative to controls primarily to PCC/PCU and inferior parietal regions. Cortical thickness increases and covariance reductions in ASD were consistent, yet of variable effect size, across the different sites evaluated and measurable both in children and adults. Our multisite study shows regional and network‐level structural alterations in mPFC in ASD that, possibly, relate to atypical socio‐cognitive functions in this condition. Hum Brain Mapp 36:2364–2373, 2015 . © 2015 Wiley Periodicals, Inc.