z-logo
open-access-imgOpen Access
Memory traces of long‐range coordinated oscillations in the sleeping human brain
Author(s) -
Piantoni Giovanni,
Van Der Werf Ysbrand D.,
Jensen Ole,
Van Someren Eus J. W.
Publication year - 2015
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.22613
Subject(s) - neuroscience , magnetoencephalography , memory consolidation , premovement neuronal activity , psychology , wakefulness , sleep (system call) , electroencephalography , brain activity and meditation , sleep spindle , rapid eye movement sleep , slow wave sleep , hippocampus , computer science , operating system
Cognition involves coordinated activity across distributed neuronal networks. Neuronal activity during learning triggers cortical plasticity that allows for reorganization of the neuronal network and integration of new information. Animal studies have shown post‐learning reactivation of learning‐elicited neuronal network activity during subsequent sleep, supporting consolidation of the reorganization. However, no previous studies, to our knowledge, have demonstrated reactivation of specific learning‐elicited long‐range functional connectivity during sleep in humans. We here show reactivation of learning‐induced long‐range synchronization of magnetoencephalography power fluctuations in human sleep. Visuomotor learning elicited a specific profile of long‐range cortico‐cortical synchronization of slow (0.1 Hz) fluctuations in beta band (12–30 Hz) power. The parieto‐occipital part of this synchronization profile reappeared in delta band (1–3.5 Hz) power fluctuations during subsequent sleep, but not during the intervening wakefulness period. Individual differences in the reactivated synchronization predicted postsleep performance improvement. The presleep resting‐state synchronization profile was not reactivated during sleep. The findings demonstrate reactivation of long‐range coordination of neuronal activity in humans, more specifically of reactivation of coupling of infra‐slow fluctuations in oscillatory power. The spatiotemporal profile of delta power fluctuations during sleep may subserve memory consolidation by echoing coordinated activation elicited by prior learning. Hum Brain Mapp, 36:67–84, 2015 . © 2014 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here