
Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network
Author(s) -
Notturno Francesca,
Marzetti Laura,
Pizzella Vittorio,
Uncini Antonino,
Zappasodi Filippo
Publication year - 2014
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.22322
Subject(s) - transcranial direct current stimulation , neuroscience , psychology , electroencephalography , primary motor cortex , stimulation , motor cortex , posterior parietal cortex , audiology , medicine
We systematically investigated the effects of cathodal and anodal Transcranial Direct Current Stimulation (CtDCS, AtDCS) on the electric activity of primary motor cortex during a motor task. High‐density electroencephalography was used to define the spatial diffusion of tDCS after effects. Ten healthy subjects performed a finger tapping task with the right hand before and after three separate sessions of 20 minutes of Sham, AtDCS or CtDCS over left primary motor cortex (M1). During movement, we found an increment of low alpha band Event‐Related Desynchronization (ERD) in bilateral central, frontal areas and in the left inferior parietal region, as well as an increment of beta ERD in fronto‐central and parieto‐occipital regions, after AtDCs compared to Sham and CtDCS. In the rest pre‐movement period, after Sham as well as AtDCS, we documented an increment of low alpha band power over the course of pre‐ and post‐stimulation recording sessions, localized in the sensorimotor and parieto‐occipital regions. On the contrary, after CtDCS no increment of low alpha power was found. Finally beta band coherence among signals from left sensorimotor cortex and activity of bilateral parietal, occipital and right frontal regions was higher after AtDCS compared with Sham condition. Similarly, theta coherence with parietal and frontal regions was enhanced after AtDCS. We hypothesize that the local modulation of membrane polarization, as well as long‐lasting synaptic modification induced by tDCS over M1, could result in changes of both local band power and functional architecture of the motor network. Hum Brain Mapp 35:2220–2232, 2014 . © 2013 Wiley Periodicals, Inc.