z-logo
open-access-imgOpen Access
Influence of magnetic field strength and image registration strategy on voxel‐based morphometry in a study of Alzheimer's disease
Author(s) -
Marchewka Artur,
Kherif Ferath,
Krueger Gunnar,
Grabowska Anna,
Frackowiak Richard,
Draganski Bogdan
Publication year - 2014
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.22297
Subject(s) - voxel , voxel based morphometry , neuroscience , disease , artificial intelligence , magnetic resonance imaging , psychology , medicine , pathology , computer science , radiology , white matter
Multi‐centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non‐quantitative character of the widely used structural T1‐weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi‐site MR images, there are only sparse empirically‐based recommendations for processing and analysis of pooled multi‐centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel‐based morphometry in AD. We perform a whole‐brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi‐centre VBM studies irrespective of disease status or MFS. Hum Brain Mapp 35:1865–1874, 2014 . © 2013 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here