z-logo
open-access-imgOpen Access
Losing the struggle to stay awake: Divergent thalamic and cortical activity during microsleeps
Author(s) -
Poudel Govinda R.,
Innes Carrie R.H.,
Bones Philip J.,
Watts Richard,
Jones Richard D.
Publication year - 2014
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.22178
Subject(s) - neuroscience , electroencephalography , psychology , thalamus , alertness , basal forebrain , posterior parietal cortex , functional magnetic resonance imaging , posterior cingulate , cortex (anatomy) , arousal , brain activity and meditation , audiology , medicine , central nervous system , psychiatry
Maintaining alertness is critical for safe and successful performance of most human activities. Consequently, microsleeps during continuous visuomotor tasks, such as driving, can be very serious, not only disrupting performance but sometimes leading to injury or death due to accidents. We have investigated the neural activity underlying behavioral microsleeps – brief (0.5–15 s) episodes of complete failure to respond accompanied by slow eye‐closures – and EEG theta activity during drowsiness in a continuous task. Twenty healthy normally‐rested participants performed a 50‐min continuous tracking task while fMRI, EEG, eye‐video, and responses were simultaneously recorded. Visual rating of performance and eye‐video revealed that 70% of the participants had frequent microsleeps. fMRI analysis revealed a transient decrease in thalamic, posterior cingulate, and occipital cortex activity and an increase in frontal, posterior parietal, and parahippocampal activity during microsleeps. The transient activity was modulated by the duration of the microsleep. In subjects with frequent microsleeps, power in the post‐central EEG theta was positively correlated with the BOLD signal in the thalamus, basal forebrain, and visual, posterior parietal, and prefrontal cortices. These results provide evidence for distinct neural changes associated with microsleeps and with EEG theta activity during drowsiness in a continuous task. They also suggest that the occurrence of microsleeps during an active task is not a global deactivation process but involves localized activation of fronto‐parietal cortex, which, despite a transient loss of arousal, may constitute a mechanism by which these regions try to restore responsiveness. Hum Brain Mapp 35:257–269, 2014. © 2012 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here