Open Access
Adaptive changes in the neuromagnetic response of the primary and association somatosensory areas following repetitive tactile hand stimulation in humans
Author(s) -
Popescu Elena Anda,
Barlow Steven M.,
Venkatesan Lalit,
Wang Jingyan,
Popescu Mihai
Publication year - 2013
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.21519
Subject(s) - somatosensory system , magnetoencephalography , neuroscience , somatosensory evoked potential , stimulation , sensory stimulation therapy , psychology , adaptation (eye) , cortex (anatomy) , secondary somatosensory cortex , contrast (vision) , electroencephalography , computer science , artificial intelligence
Abstract Cortical adaptation in the primary somatosensory cortex (SI) has been probed using different stimulation modalities and recording techniques, in both human and animal studies. In contrast, considerably less knowledge has been gained about the adaptation profiles in other areas of the cortical somatosensory network. Using magnetoencephalography (MEG), we examined the patterns of short‐term adaptation for evoked responses in SI and somatosensory association areas during tactile stimulation applied to the glabrous skin of the hand. Cutaneous stimuli were delivered as trains of serial pulses with a constant frequency of 2 Hz and 4 Hz in separate runs, and a constant inter‐train interval of 5 s. The unilateral stimuli elicited transient responses to the serial pulses in the train, with several response components that were separated by independent component analysis. Subsequent source reconstruction techniques identified regional generators in the contralateral SI and somatosensory association areas in the posterior parietal cortex (PPC). Activity in the bilateral secondary somatosensory cortex (i.e., SII/PV) was also identified, although less consistently across subjects. The dynamics of the evoked activity in each area and the frequency‐dependent adaptation effects were assessed from the changes in the relative amplitude of serial responses in each train. We show that the adaptation profiles in SI and PPC areas can be quantitatively characterized from neuromagnetic recordings using tactile stimulation, with the sensitivity to repetitive stimulation increasing from SI to PPC. A similar approach for SII/PV has proven less straightforward, potentially due to the tendency of these areas to respond selectively to certain stimuli. Hum Brain Mapp, 2013. © 2012 Wiley Perodicals, Inc.