z-logo
open-access-imgOpen Access
Transcallosal sensorimotor fiber tract structure‐function relationships
Author(s) -
Fling Brett W.,
Benson Bryan L.,
Seidler Rachael D.
Publication year - 2013
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.21437
Subject(s) - corpus callosum , neuroscience , white matter , diffusion mri , psychology , fiber tract , inhibitory postsynaptic potential , anatomy , biology , magnetic resonance imaging , medicine , radiology
Recent studies have demonstrated neuroanatomically selective relationships among white matter tract microstructure, physiological function, and task performance. Such findings suggest that the microstructure of transcallosal motor fibers may reflect the capacity for interhemispheric inhibition between the primary motor cortices, although full characterization of the transcallosal inhibitory sensorimotor network is lacking. Thus, the goal of this study was to provide a comprehensive description of transcallosal fibers connecting homologous sensorimotor cortical regions and to identify the relationship(s) between fiber tract microstructure and interhemispheric inhibition during voluntary cortical activity. To this end, we assessed microstructure of fiber tracts connecting homologous sensorimotor regions of the cortex with diffusion tensor imaging. We also assessed interhemispheric inhibition by eliciting the ipsilateral silent period (iSP) within the same participants. We mapped mutually exclusive transcallosal connections between homologous sensorimotor regions and computed quantitative metrics of each fiber tract. Paralleling work in non‐human primates, we found the densest interhemispheric sensorimotor connections to be between the medial motor areas. Additionally, we provide a midsagittal callosal atlas in normalized Montreal Neurological Institute (MNI) space for future studies to use when investigating callosal fiber tracts connecting primary and secondary sensorimotor cortices. Finally, we report a strong, positive relationship ( r = 0.76) between strength of interhemispheric inhibition (iSP) and microstructure of interhemispheric fibers that is specific to tracts connecting the primary motor cortices. Thus, increased fiber microstructure in young adults predicts interhemispheric inhibitory capacity. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here