z-logo
open-access-imgOpen Access
Neural processes of preparatory control for stop signal inhibition
Author(s) -
Hu Sien,
Li ChiangShan R.
Publication year - 2012
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.21399
Subject(s) - stop signal , functional magnetic resonance imaging , inferior parietal lobule , neuroscience , psychology , prefrontal cortex , posterior cingulate , supplementary motor area , primary motor cortex , ventromedial prefrontal cortex , motor cortex , cognition , computer science , telecommunications , stimulation , latency (audio)
This study investigated the preparatory control of motor inhibition and motor execution using a stop signal task (SST) and functional magnetic resonance imaging (fMRI). In the SST, a frequent “go” signal triggered a prepotent response and a less frequent “stop” signal prompted the inhibition of this response. Preparatory control of motor inhibition and execution in the stop signal trials were examined by contrasting brain activation between stop success and stop error trials during the fore‐period, in which participants prepared to respond to go or to stop. Results from 91 healthy adults showed greater activation in the right prefrontal cortex and inferior parietal lobule during preparatory motor inhibition. Preparatory motor execution activated bilateral putamen, primary motor cortices, posterior cingulate cortex, ventromedial prefrontal cortex, and superior temporal/intraparietal sulci. Furthermore, the extents of these inhibition and execution activities were inversely correlated across subjects. On the basis of a median split of the stop signal reaction time (SSRT), subjects with short SSRT showed greater activity in the right orbital frontal cortex during preparatory inhibition. These new findings suggest that the go and stop processes interact prior to target presentation in the SST, in accord with recent computational models of stop signal inhibition. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here