z-logo
open-access-imgOpen Access
Association between reward‐related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype
Author(s) -
Hahn Tim,
Heinzel Sebastian,
Dresler Thomas,
Plichta Michael M.,
Renner Tobias J.,
Markulin Falko,
Jakob Peter M.,
Lesch KlausPeter,
Fallgatter Andreas J.
Publication year - 2011
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.21127
Subject(s) - ventral striatum , neuroscience , psychology , reward system , dopamine transporter , dopaminergic , anticipation (artificial intelligence) , brain stimulation reward , dopamine , functional magnetic resonance imaging , striatum , trait , addiction , nucleus accumbens , artificial intelligence , computer science , programming language
Abstract The impact of individual differences on human reward processing has been a focus of research in recent years, particularly, as they are associated with a variety of neuropsychiatric diseases including addiction and attention‐deficit/hyperactivity disorder. Studies exploring the neural basis of individual differences in reward sensitivity have consistently implicated the ventral striatum (VS) as a core component of the human reward system. However, the mechanisms of dopaminergic neurotransmission underlying ventral striatal activation as well as trait reward sensitivity remain speculative. We addressed this issue by investigating the triadic interplay between VS reactivity during reward anticipation using functional magnetic resonance imaging, trait reward sensitivity, and dopamine (DA) transporter genotype (40‐bp 3′VNTR of DAT, SLC6A3 ) affecting synaptic DA neurotransmission. Our results show that DAT variation moderates the association between VS‐reactivity and trait reward sensitivity. Specifically, homozygote carriers of the DAT 10‐repeat allele exhibit a strong positive correlation between reward sensitivity and reward‐related VS activity whereas this relationship is absent in the DAT 9‐repeat allele carriers. We discuss the possibility that this moderation of VS‐trait relation might arise from DAT ‐dependent differences in DA availability affecting synaptic plasticity within the VS. Generally, studying the impact of dopaminergic gene variations on the relation between reward‐related brain activity and trait reward sensitivity might facilitate the investigation of complex mechanisms underlying disorders linked to dysregulation of DA neurotransmission. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here