z-logo
open-access-imgOpen Access
Single subject task‐related BOLD signal artifact in a real‐time fMRI feedback paradigm
Author(s) -
Zhang Xiaochu,
Ross Thomas J.,
Jo Salmeron Betty,
Yang Shaolin,
Yang Yihong,
Stein Elliot A.
Publication year - 2011
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.21046
Subject(s) - artifact (error) , functional magnetic resonance imaging , computer vision , signal (programming language) , artificial intelligence , computer science , task (project management) , eye movement , psychology , neuroscience , programming language , management , economics
Abstract Real‐time functional magnetic resonance imaging (rtfMRI) has been proposed as a method of providing feedback to develop a participant's ability to control his or her own neuronal activity. However, this BOLD signal is vulnerable to contamination from nonneuronal sources that can also be shaped by the feedback provided. Here we illustrate an artifact found while training participants to control signal from an ROI in the insula. As the artifact was directly behind the eye and the experiment used an echo‐planar imaging (EPI) sequence with phase encoding direction that included the orbits and the insula in the same line, we hypothesized that the artifact was due to eye motion. We demonstrate a reduced training effect when eyeball signal is regressed out of the data and reproduce the artifact with block design voluntary eye movement. Further, using independent components analysis on historical data, we find the artifact is common in BOLD data, but typically not task‐correlated, even in tasks where one might expect differing amounts of eye movement in the active task blocks. The artifact, thus, does not significantly impact group results in typical fMRI experiments. Finally, we demonstrate this particular artifact can be avoided in rtfMRI experiments by ensuring that the phase encoding direction does not project any eye movement related artifact onto the ROI being used for feedback training. Our findings underscore the importance of taking great care in designing rtfMRI feedback procedures to avoid contamination with nonneuronal sources of BOLD signal alteration. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here