z-logo
open-access-imgOpen Access
Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study
Author(s) -
Mayer Andrew R.,
Mannell Maggie V.,
Ling Josef,
Elgie Robert,
Gasparovic Charles,
Phillips John P.,
Doezema David,
Yeo Ronald A.
Publication year - 2009
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.20836
Subject(s) - psychology , traumatic brain injury , neuroscience , functional magnetic resonance imaging , cognition , audiology , medicine , psychiatry
The semiacute phase of mild traumatic brain injury (mTBI) is associated with deficits in the cognitive domains of attention, memory, and executive function, which previous work suggests may be related to a specific deficit in disengaging attentional focus. However, to date, there have only been a few studies that have employed dynamic imaging techniques to investigate the potential neurological basis of these cognitive deficits during the semiacute stage of injury. Therefore, event‐related functional magnetic resonance imaging was used to investigate the neurological correlates of attentional dysfunction in a clinically homogeneous sample of 16 patients with mTBI during the semiacute phase of injury (<3 weeks). Behaviorally, patients with mTBI exhibited deficits in disengaging and reorienting auditory attention following invalid cues as well as a failure to inhibit attentional allocation to a cued spatial location compared to a group of matched controls. Accordingly, patients with mTBI also exhibited hypoactivation within thalamus, striatum, midbrain nuclei, and cerebellum across all trials as well as hypoactivation in the right posterior parietal cortex, presupplementary motor area, bilateral frontal eye fields, and right ventrolateral prefrontal cortex during attentional disengagement. Finally, the hemodynamic response within several regions of the attentional network predicted response times better for controls than for patients with mTBI. These objective neurological findings represent a potential biomarker for the behavioral deficits in spatial attention that characterize the initial recovery phase of mTBI. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here