Open Access
A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework
Author(s) -
Sui Jing,
Adali Tülay,
Pearlson Godfrey D.,
Clark Vincent P.,
Calhoun Vince D.
Publication year - 2009
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.20721
Subject(s) - independent component analysis , pattern recognition (psychology) , artificial intelligence , functional magnetic resonance imaging , computer science , noise (video) , ranking (information retrieval) , psychology , image (mathematics) , neuroscience
Abstract Independent component analysis (ICA) is a promising method that is increasingly used to analyze brain imaging data such as functional magnetic resonance imaging (fMRI), structural MRI, and electroencephalography and has also proved useful for group comparison, e.g., differentiating healthy controls from patients. An advantage of ICA is its ability to identify components that are mixed in an unknown manner. However, ICA is not necessarily robust and optimal in identifying between‐group effects, especially in highly noisy situations. Here, we propose a modified ICA framework for multigroup data analysis that incorporates prior information regarding group membership as a constraint into the mixing coefficients. Our approach, called coefficient‐constrained ICA (CC‐ICA), prioritizes identification of components that show a significant group difference. The performance of CC‐ICA via synthetic and hybrid data simulations is evaluated under different hypothesis testing assumptions and signal to noise ratios (SNRs). Group analysis is also conducted on real multitask fMRI data. Results show that CC‐ICA improves the estimation accuracy of the independent components greatly, especially those that have different patterns for different groups (e.g., patients vs. controls); In addition, it enhances the data extraction sensitivity to group differences by ranking components with P value or J ‐divergence more consistently with the ground truth. The proposed algorithm performs quite well for both group‐difference detection and multitask fMRI data fusion, which may prove especially important for the identification of relevant disease biomarkers. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.