Open Access
Common and specific contributions of the intraparietal sulci to numerosity and length processing
Author(s) -
Dormal Valérie,
Pesenti Mauro
Publication year - 2009
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.20677
Subject(s) - numerosity adaptation effect , neuroscience , functional magnetic resonance imaging , representation (politics) , blood oxygenation , computer science , psychology , biology , cognition , politics , political science , law
Abstract Numerical and spatial magnitude processing have long been intimately associated, leading to the suggestion that they share a common system of magnitude representation. Although separate investigations on the cerebral areas involved in numerosity and spatial estimation point toward the parietal cortex, the precise anatomical overlap, if any, has not yet been directly established. Here, functional magnetic resonance imaging was used to localize the cerebral network involved in processing both numerosity and length. Blood oxygenation level‐dependent signal changes were measured while healthy volunteers were making numerosity comparisons on linear arrays of dots, and length comparisons on discrete linear arrays of dots and continuous rectangles. The results show the bilateral involvement of parietal regions around the intraparietal sulci in explicit and implicit processing of numerosity, and a right lateralized occipitoparietal network activation in length processing; numerosity and length processing both activate the right IPS and the precentral gyrus. By excluding the mandatory intrinsic spatial processing of arrays, we demonstrate that the left IPS is involved in numerosity processing only, whereas the right IPS underlies a common processing mechanism or representation of spatial and numerical magnitude. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.