z-logo
open-access-imgOpen Access
Modeling direct effects of neural current on MRI
Author(s) -
Heller Leon,
Barrowes Benjamin E.,
George John S.
Publication year - 2009
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.20484
Subject(s) - voxel , signal (programming language) , physics , phase (matter) , dipole , nuclear magnetic resonance , magnitude (astronomy) , magnetic dipole , moment (physics) , computer science , artificial intelligence , quantum mechanics , astronomy , programming language
We investigate the effect of the magnetic field generated by neural activity on the magnitude and phase of the MRI signal in terms of a phenomenological parameter with the dimensions of length; it involves the product of the strength and duration of these currents. We obtain an analytic approximation to the MRI signal when the neuromagnetically induced phase is small inside the MRI voxel. The phase shift is the average of the MRI phase over the voxel, and therefore first order in that phase; and the reduction in the signal magnitude is one half the square of the standard deviation of the MRI phase, which is second order. The analytic approximation is compared with numerical simulations. For weak currents the agreement is excellent, and the magnitude change is generally much smaller than the phase shift. Using MEG data as a weak constraint on the current strength we find that for a net dipole moment of 10 nAm, a typical value for an evoked response, the reduction in the magnitude of the MRI signal is two parts in 10 5 , and the maximum value of the overall phase shift is $ \approx 4 \cdot 10^{-3} $ , obtained when the MRI voxel is displaced 2/3 the size of the neuronal activity. We also show signal changes over a large range of values of the net dipole moment. We compare these results with others in the literature. Our model overestimates the effect on the MRI signal. Hum Brain Mapp 2009. © 2007 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here