z-logo
open-access-imgOpen Access
Cortical regions involved in eye movements, shifts of attention, and gaze perception
Author(s) -
Grosbras MarieHélène,
Laird Angela R.,
Paus Tomás
Publication year - 2005
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.20145
Subject(s) - intraparietal sulcus , gaze , eye movement , psychology , saccade , covert , saccadic masking , frontal eye fields , perception , posterior parietal cortex , cognitive psychology , brain mapping , eye tracking , visual perception , neuroscience , computer vision , computer science , linguistics , philosophy , psychoanalysis
Human vision is an active process that involves shifting attention across the visual scene, with or without moving the eyes. Such shifts of attention can be generated at will (endogenously) or be triggered automatically, i.e., generated in response to exogenous stimuli including socially relevant cues such as someone else's gaze. What are the common and distinct brain mechanisms involved in these processes? To address this question, we carried out a quantitative effect‐location meta‐analysis of 59 brain‐imaging experiments whose results were published using standardized coordinates. For each condition of interest, namely voluntary and visually triggered eye movements, voluntary and visually triggered (covert) shifts of attention, and perception of someone else's gaze, we computed activation likelihood estimation (ALE) maps. Those maps represent at each voxel of the brain the probability of reporting a signal change related to the condition of interest. For eye movements, this analysis confirmed the spatial location of the frontal eye fields, supplementary eye fields, and parietal saccade‐related regions. The map of covert shifts of attention demonstrated highest similarity with the map of saccadic eye movements. Gaze perception showed common activation likelihood with the other conditions in the right intraparietal sulcus and in the lateral precentral gyrus. It demonstrated more similarity with the reflexive than with the voluntary saccades and shifts of attention. We propose that a core network of frontoparietal and temporal brain regions is recruited when we shift the focus of our attention with or without eye movements in response to the appearance of a visual target, as well as when we see someone else shift his or her gaze. Hum Brain Mapp 25:140–154, 2005. © 2005 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here