z-logo
open-access-imgOpen Access
Temporal dynamics of ipsilateral and contralateral motor activity during voluntary finger movement
Author(s) -
Huang MingXiong,
Harrington Deborah L.,
Paulson Kim M.,
Weisend Michael P.,
Lee Roland R.
Publication year - 2004
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.20038
Subject(s) - supplementary motor area , sma* , magnetoencephalography , psychology , motor area , movement (music) , neuroscience , latency (audio) , premotor cortex , laterality , anatomy , medicine , functional magnetic resonance imaging , physics , dorsum , electroencephalography , computer science , telecommunications , algorithm , acoustics
Abstract The role of motor activity ipsilateral to movement remains a matter of debate, due in part to discrepancies among studies in the localization of this activity, when observed, and uncertainty about its time course. The present study used magnetoencephalography (MEG) to investigate the spatial localization and temporal dynamics of contralateral and ipsilateral motor activity during the preparation of unilateral finger movements. Eight right‐handed normal subjects carried out self‐paced finger‐lifting movements with either their dominant or nondominant hand during MEG recordings. The Multi‐Start Spatial Temporal multi‐dipole method was used to analyze MEG responses recorded during the movement preparation and early execution stage (−800 msec to +30 msec) of movement. Three sources were localized consistently, including a source in the contralateral primary motor area (M1) and in the supplementary motor area (SMA). A third source ipsilateral to movement was located significantly anterior, inferior, and lateral to M1, in the premotor area (PMA) (Brodmann area [BA] 6). Peak latency of the SMA and the ipsilateral PMA sources significantly preceded the peak latency of the contralateral M1 source by 60 msec and 52 msec, respectively. Peak dipole strengths of both the SMA and ipsilateral PMA sources were significantly weaker than was the contralateral M1 source, but did not differ from each other. Altogether, the results indicated that the ipsilateral motor activity was associated with premotor function, rather than activity in M1. The time courses of activation in SMA and ipsilateral PMA were consistent with their purported roles in planning movements. Hum. Brain Mapp. 23:26–39, 2004. © 2004 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here