z-logo
open-access-imgOpen Access
Attenuation of brain BOLD response following lipid ingestion
Author(s) -
Noseworthy Michael D.,
Alfonsi Jeff,
Bells Sonya
Publication year - 2003
Publication title -
human brain mapping
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.005
H-Index - 191
eISSN - 1097-0193
pISSN - 1065-9471
DOI - 10.1002/hbm.10131
Subject(s) - resting state fmri , blood oxygen level dependent , postprandial , ingestion , brain activity and meditation , confounding , canola , communication noise , medicine , neuroscience , psychology , audiology , functional magnetic resonance imaging , electroencephalography , chemistry , food science , linguistics , philosophy , insulin
A great deal of heterogeneity exists in fMRI data. Even within the same subject, results on successive days or scan sessions often differ in the number of significantly activated pixels and/or the intensity of activation. We sought to assess whether controllable physiologic modulators, such as dietary factors, could influence the outcome of fMRI data. A high fat diet, for example, prior to a fMRI scan could change microvascular blood rheologic factors and potentially alter brain blood oxygen‐level dependent (BOLD) signal patterns. In healthy adult volunteers, we measured brain BOLD signal during bilateral finger tapping (2 Hz) in the fasted state, and at 40 and 100 minutes post‐ingestion of a 235 mL can of Ensure Plus (Ross Labs), alone or supplemented with either 25cc or 50cc of canola oil. Both the 25cc and 50cc Canola oil treatments produced a significant bilateral decrease in BOLD signal 40 and 100 minutes postprandial. No significant effect was observed with Ensure in the absence of oil. Therefore, to decrease fMRI within and between subject heterogeneity, and thereby increase fMRI statistical power, it is suggested that scanning within 2 hours post high fat ingestion should be avoided. As a corollary, a thorough understanding of a subject's physiological state, prior to an fMRI exam, may reduce the impact of other confounding variables. Hum. Brain Mapp. 20:116–121, 2003. © 2003 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here