Premium
Insights into distributed plate rates across the Walker Lane from GPS geodesy
Author(s) -
Lifton Zachery M.,
Newman Andrew V.,
Frankel Kurt L.,
Johnson Christopher W.,
Dixon Timothy H.
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/grl.50804
Subject(s) - geology , basin and range province , slip (aerodynamics) , geodesy , geodetic datum , extensional definition , global positioning system , seismology , structural basin , basin and range topography , pleistocene , differential gps , tectonics , geomorphology , paleontology , telecommunications , computer science , physics , thermodynamics
Contemporary geodetic slip rates are observed to be approximately two times greater than late Pleistocene geologic slip rates across the southern Walker Lane. Using a dense GPS network, we compare the present‐day crustal velocities to observed geologic slip rates in the region. We find that the Walker Lane is characterized by a smooth transition from westward extension in the Basin and Range to northwestward motion of the Sierra Nevada block. The GPS velocity field indicates that (1) plate parallel (N37°W) velocities define a velocity differential of 10.6 ± 0.5 mm/yr between the western Basin and Range and the Sierra Nevada block, (2) there is ~2 mm/yr of contemporary extension perpendicular to the normal faults of the Silver Peak‐Lone Mountain extensional complex, and (3) most of the observed discrepancy in long‐ and short‐term slip rates occurs across Owens Valley. We believe the discrepancy is due to distributed strain and underestimated geologic slip rates.