z-logo
Premium
Determining the orientations of ocean bottom seismometers using ambient noise correlation
Author(s) -
Zha Yang,
Webb Spahr C.,
Menke William
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/grl.50698
Subject(s) - seismometer , azimuth , ambient noise level , rayleigh wave , geology , polarization (electrochemistry) , rayleigh scattering , cross correlation , seismic noise , seismology , geodesy , robustness (evolution) , noise (video) , vertical orientation , surface wave , acoustics , physics , optics , computer science , telecommunications , mathematics , sound (geography) , mathematical analysis , biochemistry , chemistry , artificial intelligence , image (mathematics) , gene , geomorphology
The cross‐correlation of multicomponent ambient seismic noise can reveal both the velocity and polarization of surface waves propagating between pairs of stations. We explore this property to develop a novel method for determining the horizontal orientation of ocean bottom seismometers (OBS) by analyzing the polarization of Rayleigh waves retrieved from ambient noise cross‐correlation. We demonstrate that the sensor orientations can be estimated through maximizing the correlation between the radial‐vertical component and the phase‐shifted vertical‐vertical component of the empirical Green's tensor. We apply this new method to the ELSC (Eastern Lau Spreading Center) OBS experiment data set and illustrate its robustness by comparing the obtained orientations with results from a conventional method utilizing teleseismic P and Rayleigh wave polarizations. When applied to a large OBS array, the ambient noise method provides a larger number of orientation estimates and better azimuthal coverage than typically is possible with traditional methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here