Premium
Radiated VLF energy differences of land and oceanic lightning
Author(s) -
Hutchins M. L.,
Holzworth R. H.,
Virts K. S.,
Wallace J. M.,
Heckman S.
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/grl.50406
Subject(s) - lightning (connector) , thunderstorm , environmental science , meteorology , energy (signal processing) , remote sensing , geology , atmospheric electricity , physics , electric field , quantum mechanics , power (physics)
A global contrast between oceanic and continental lightning very low frequency energy is observed using the World Wide Lightning Location Network (WWLLN). Strokes over the ocean are found to be stronger on average than those over land with a sharp boundary along a majority of coastlines. A linear regression method is developed to account for the spatial and temporal variation of WWLLN in order to perform a multiyear and global analysis of stroke energy distributions. The results are corroborated with data from the Lightning Imaging Sensor, the Optical Transient Detector, and the Earth Networks Total Lightning Network. These systematic comparisons lead to the conclusion that there exists a strong difference in the energetics between land and ocean thunderstorms that results in a higher fraction of more powerful strokes over the oceans.