z-logo
Premium
Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport
Author(s) -
Sankey Joel B.,
Law Darin J.,
Breshears David D.,
Munson Seth M.,
Webb Robert H.
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/grl.50356
Subject(s) - lidar , canopy , environmental science , vegetation (pathology) , remote sensing , plant cover , aeolian processes , biosphere , hydrology (agriculture) , geology , ecology , geomorphology , medicine , geotechnical engineering , pathology , biology
The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar‐derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here