Premium
Extensive linear ridge networks in Nili Fossae and Nilosyrtis, Mars: implications for fluid flow in the ancient crust
Author(s) -
Saper Lee,
Mustard John F.
Publication year - 2013
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1002/grl.50106
Subject(s) - geology , ridge , geomorphology , crust , clastic rock , outcrop , geochemistry , dike , petrology , paleontology , structural basin
We have undertaken high‐resolution mapping of the distribution, physical characteristics, orientation, and stratigraphic occurrence of >4000 linear ridge segments in two study areas, the Nilosyrtis highlands and the Nili Fossae region covering 1 × 10 5 km 2 . Ridges are typically hundreds of meters in length, meters in width, and up to tens of meters in height. Ridges form intersecting networks of anastomosing and bifurcating segments and consequently have variable orientations. Ridges are expressed in altered and brecciated basement materials on the floors and rims of impact craters deeply eroded by fluvial and other processes. The ridge‐bearing basement is the lowest exposed stratigraphic unit and is overlain by a relatively unaltered mafic cap rock. Ridges are observed to terminate at the contact of these two units. We interpret the ridges to represent a complex of fractures, faults, shear zones, clastic and melt‐bearing dikes, and pseudotachylytes that have been variably indurated by fluid percolation and mineralization. The fluid conduits were hardened relative to the host rock and are expressed as ridges due to differential erosion. The orientations of the exhumed ridges record the state of stress in the crust at the time of formation. In Nili Fossae, a significant population of ridges is aligned with the orientations of the Nili Fossae graben, indicating that their emplacement may be related to crustal loading of the Isidis Basin after the impact event. The association of ridges with the hydrated mineral‐bearing basement suggests that, in the postimpact environment, the fractures served as conduits of preferential fluid flow, which were cemented by mineral precipitation.