Premium
Glial influences on axonal growth in the primary olfactory system
Author(s) -
Doucette R.
Publication year - 1990
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/glia.440030602
Subject(s) - olfactory ensheathing glia , biology , olfactory nerve , olfactory epithelium , neurogenesis , neuroscience , olfactory system , astrocyte , olfactory bulb , olfactory receptor , neuroglia , spinal cord , microbiology and biotechnology , central nervous system , anatomy
Neurogenesis in the olfactory epithelium continues throughout the entire life of mammals, and it is the axons of these newly formed olfactory receptor neurons that grow into the target tissue after the first cranial nerve is injured, not the regenerating axons of mature cells. These axons are able to enter and grow within the CNS of adult animals, unlike regenerating axons in injured dorsal roots, the majority of which are prevented from penetrating very far into the spinal cord. One reason why the olfactory axons are so successful in entering the CNS may be due, at least partially, to the fact that they are ensheathed by a type of glial cell (the ensheathing cell) that expresses phenotypic features of both astrocyte and Schwann cells. The presence of both L1/Ng‐CAM and N‐CAM in the plasma membranes of both ensheathing cells and immature olfactory receptor neurons would enable the olfactory axons to use the glial cell surfaces as a substratum on which to grow. It is probably also true that ensheathing cells synthesize and secrete laminin, thus providing an additional adhesive substrate for the olfactory axons, as well as glia‐derived nexin and nerve growth factor, both of which are neuritepromoting agents.