Premium
I nhibition of astroglial connexin43 hemichannels with TAT ‐ G ap19 exerts anticonvulsant effects in rodents
Author(s) -
Walrave Laura,
Pierre Anouk,
Albertini Giulia,
Aourz Najat,
De Bundel Dimitri,
Van Eeckhaut Ann,
Vinken Mathieu,
Giaume Christian,
Leybaert Luc,
Smolders Ilse
Publication year - 2018
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/glia.23341
Subject(s) - epilepsy , anticonvulsant , pilocarpine , pharmacology , hippocampal formation , neuroscience , epileptogenesis , chemistry , biology
Accumulating evidence shows a key function for astrocytic connexin43 (Cx43) signaling in epilepsy. However, the lack of experimental distinction between Cx43 gap junction channels (GJCs) and hemichannels (HCs) has impeded the identification of the exact contribution of either channel configurations to epilepsy. We therefore investigated whether TAT‐Gap19, a Cx mimetic peptide that inhibits Cx43 HCs but not the corresponding Cx43 GJCs, influences experimentally induced seizures in rodents. Dye uptake experiments in acute hippocampal slices of mice demonstrated that astroglial Cx43 HCs open in response to the chemoconvulsant pilocarpine and this was inhibited by TAT‐Gap19. In vivo , pilocarpine‐induced seizures as well as the accompanying increase in D‐serine microdialysate levels were suppressed by Cx43 HC inhibition. Moreover, the anticonvulsant action of TAT‐Gap19 was reversed by exogenous D‐serine administration, suggesting that Cx43 HC inhibition protects against seizures by lowering extracellular D‐serine levels. The anticonvulsive properties of Cx43 HC inhibition were further confirmed in electrical seizure mouse models, i.e . an acute 6 Hertz (Hz) model of refractory seizures and a chronic 6 Hz corneal kindling model. Collectively, these results indicate that Cx43 HCs play a role in seizures and underscore their potential as a novel and druggable target in epilepsy treatment.