z-logo
Premium
Impairment of protein degradation and proteasome function in hereditary neuropathies
Author(s) -
VerPlank Jordan J. S.,
Lokireddy Sudarsanareddy,
Feltri M. Laura,
Goldberg Alfred L.,
Wrabetz Lawrence
Publication year - 2018
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/glia.23251
Subject(s) - proteasome , proteostasis , deubiquitinating enzyme , biology , ubiquitin , microbiology and biotechnology , proteases , protein degradation , amyotrophic lateral sclerosis , biochemistry , enzyme , medicine , gene , disease
In several neurodegenerative diseases in which misfolded proteins accumulate there is impairment of the ubiquitin proteasome system (UPS). We tested if a similar disruption of proteostasis occurs in hereditary peripheral neuropathies. In sciatic nerves from mouse models of two human neuropathies, Myelin Protein Zero mutation (S63del) and increased copy number (P0 overexpression), polyubiquitinated proteins accumulated, and the overall rates of protein degradation were decreased. 26S proteasomes affinity‐purified from sciatic nerves of S63del mice were defective in degradation of peptides and a ubiquitinated protein, unlike proteasomes from P0 overexpression, which appeared normal. Nevertheless, cellular levels of 26S proteasomes were increased in both, through the proteolytic‐activation of the transcription factor Nrf1, as occurs in response to proteasome inhibitors. In S63del, increased amounts of the deubiquitinating enzymes USP14, UCH37, and USP5 were associated with proteasomes, the first time this has been reported in a human disease model. Inhibitors of USP14 increased the rate of protein degradation in S63del sciatic nerves and unexpectedly increased the phosphorylation of eIF2α by Perk. Thus, proteasome content, composition and activity are altered in these diseases and USP14 inhibitors have therapeutic potential in S63del neuropathy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here