z-logo
Premium
Combined effects of transferrin and thyroid hormone during oligodendrogenesis In vitro
Author(s) -
Marziali L. N.,
Correale J.,
Garcia C. I.,
Pasquini J. M.
Publication year - 2016
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/glia.23029
Subject(s) - biology , thyroid hormone receptor , thyroid , endocrinology , medicine , hormone , transferrin , subventricular zone , transferrin receptor , receptor , microbiology and biotechnology , stem cell , genetics , neural stem cell
Thyroid hormones (THs) and transferrin (Tf) are factors capable of favoring myelination due to their positive effects on oligodendroglial cell (OLG) differentiation. The first notion of a combined effect of apotransferrin (aTf) and TH emerged from experiments conducted in young hyperthyroid animals, which showed a seven‐fold increase in the expression of Tf mRNA and precocious myelination when compared with control animals. The mechanism underlying this phenomenon in young hyperthyroid rats could consist of an increase in Tf synthesis, which in the CNS is almost exclusively produced by OLG. Overall, our results show that, during the initial stages of OLG differentiation, Tf synthesis triggers thyroid hormone receptor alpha 1 (TRα1) expression in the subventricular zone (SVZ) and promotes proliferating cells to become responsive to this trophic factor. Exposure to TH could then regulate Tf expression through TRα1 and promote the induction of thyroid hormone receptor beta (TRβ) expression, which mediates TH effects on myelination through the activation of final OLG differentiation. This regulation of the combined effects of Tf and THs implies that both factors are fundamental actors during oligodendrogenesis. GLIA 2016;64:1879–1891

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here