Premium
E ‐Cadherin enhances neuregulin signaling and promotes S chwann cell myelination
Author(s) -
Basak Sayantani,
Desai Darshan J.,
Rho Esther H.,
Ramos Roselle,
Maurel Patrice,
Kim Haesun A.
Publication year - 2015
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/glia.22822
Subject(s) - schwann cell , cadherin , biology , neuregulin , neuregulin 1 , myelin , microbiology and biotechnology , signal transduction , adherens junction , erbb , neuroscience , cell , central nervous system , biochemistry
In myelinating Schwann cells, E‐cadherin is a component of the adherens junctions that stabilize the architecture of the noncompact myelin region. In other cell types, E‐cadherin has been considered as a signaling receptor that modulates intracellular signal transduction and cellular responses. To determine whether E‐cadherin plays a regulatory role during Schwann cell myelination, we investigated the effects of E‐cadherin deletion and over‐expression in Schwann cells. In vivo , Schwann cell‐specific E‐cadherin ablation results in an early myelination delay. In Schwann cell‐dorsal root ganglia neuron co‐cultures, E‐cadherin deletion attenuates myelin formation and shortens the myelin segment length. When over‐expressed in Schwann cells, E‐cadherin improves myelination on Nrg1 type III +/− neurons and induces myelination on normally non‐myelinated axons of sympathetic neurons. The pro‐myelinating effect of E‐cadherin is associated with an enhanced Nrg1‐erbB receptor signaling, including activation of the downstream Akt and Rac. Accordingly, in the absence of E‐cadherin, Nrg1‐signaling is diminished in Schwann cells. Our data also show that E‐cadherin expression in Schwann cell is induced by axonal Nrg1 type III, indicating a reciprocal interaction between E‐cadherin and the Nrg1 signaling. Altogether, our data suggest a regulatory function of E‐cadherin that modulates Nrg1 signaling and promotes Schwann cell myelin formation. GLIA 2015;63:1522–1536