z-logo
Premium
Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Müller cell ablation
Author(s) -
Shen Weiyong,
Lee SoRa,
Araujo Joana,
Chung Sook H.,
Zhu Ling,
Gillies Mark C.
Publication year - 2014
Publication title -
glia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.954
H-Index - 164
eISSN - 1098-1136
pISSN - 0894-1491
DOI - 10.1002/glia.22666
Subject(s) - biology , transgene , genetically modified mouse , neuroscience , ablation , pathology , medicine , gene , genetics
Retinal diseases such as macular telangiectasis type 2 (MacTel), age‐related macular degeneration (AMD) and diabetic retinopathy (DR) affect both neurons and blood vessels. Treatments addressing both at the same time might have advantages over more specific approaches, such as vascular endothelial growth factor (VEGF) inhibitors, which are used to treat vascular leak but are suspected to have a neurotoxic effect. Here, we studied the effects of an intravitreal injection of triamcinolone acetonide (TA) in a transgenic model in which patchy Müller cell ablation leads to photoreceptor degeneration, vascular leak, and intraretinal neovascularization. TA was injected 4 days before Müller cell ablation. Changes in photoreceptors, microglia and Müller cells, retinal vasculature, differential expression of p75 neurotrophin receptor (p75 NTR ), tumor necrosis factor‐α (TNFα), the precursor and mature forms of neurotrophin 3 (pro‐NT3 and mature NT3) and activation of the p53 and p38 stress‐activated protein kinase (p38/SAPK) signaling pathways were examined. We found that TA prevented photoreceptor degeneration and inhibited activation of microglial and Müller cells. TA attenuated Müller cell loss and inhibited overexpression of p75 NTR , TNFα, pro‐NT, and the activation of p53 and p38/SAPK signaling pathways. TA not only prevented the development of retinal vascular lesions but also inhibited fluorescein leakage from established vascular lesions. TA inhibited overexpression of VEGF in transgenic mice but without affecting its basal level expression in the normal retina. Our data suggest that glucocorticoid treatment may be beneficial for treatment of retinal diseases such as MacTel, AMD, and DR that affect both neurons and the vasculature. GLIA 2014;62:1110–1124

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here