Premium
Provenance and tectonic setting of the Early and Middle Devonian Xueshan Formation, the North Qilian Belt, China
Author(s) -
Hou Qian,
Mou Chuanlong,
Wang Qiyu,
Tan Zhiyuan
Publication year - 2017
Publication title -
geological journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 54
eISSN - 1099-1034
pISSN - 0072-1050
DOI - 10.1002/gj.2963
Subject(s) - provenance , geology , felsic , devonian , geochemistry , paleozoic , sedimentary rock , clastic rock , craton , tectonics , late devonian extinction , volcanic rock , volcanic belt , metamorphic rock , source rock , structural basin , paleontology , mafic , volcano , carboniferous
The North Qilian orogenic belt is the key in the exploration of the formation and assembly of Asia. The Early–Middle Devonian Xueshan Formation, which is deposited in the north area of North Qilian Orogenic Belt, is the most important for revealing the evolution basin–mountain transition of the North Qilian Belt. In order to reveal the tectonic evolution of the central orogenic belt in China and Paleozoic global plate reconstruction, it is necessary to perform provenance analysis of the Xueshan Formation. Eighteen samples were collected from Yumen and Yongchang profiles in the west of North Qilian Belt (WN), and 16 samples were obtained from Gulang and Jingtai profiles in the east of North Qilian Belt (EN). The compositions of clastic conglomerates and the sandstones suggested that felsic volcanic was the main source of the WN Xueshan Formation deposits and that the sedimentary and metamorphic rocks were the main source of the EN sediments. According to major geochemistry indexes, such as Al 2 O 3 /SiO 2 ratio ranging from 0.08 to 0.37 and the chemical index of alteration less than 80, the source rocks were moderately weathered and of moderately matured. The samples from the EN were relatively enriched in Cr, Ni, Sc, and V elements and depleted in Hf element. However, those from the WN were enriched in Hf without the enrichment of Cr, Ni, Sc, or V. The samples from WN showed a strong negative Eu anomaly, but the samples from EN showed a weak negative Eu anomaly or a positive Eu anomaly. All the above geochemical characteristics suggested the prominent input of felsic clasts with granitic rocks into the WN. Meanwhile, the discrimination diagrams of trace elements implied that WN rocks were derived from continental island arc and that the EN rocks were derived from orogenic belt and the passive continental margin. The North China Plate subducted southwards and formed subduction‐related arc magmatism along the southern margin of the North Qilian Terrane during the Early–Middle Devonian. In conclusion, the WN is a fore‐arc basin, but EN is a foreland basin.