Premium
Generalized Functional Linear Models for Gene‐Based Case‐Control Association Studies
Author(s) -
Fan Ruzong,
Wang Yifan,
Mills James L.,
Carter Tonia C.,
Lobach Iryna,
Wilson Alexander F.,
BaileyWilson Joan E.,
Weeks Daniel E.,
Xiong Momiao
Publication year - 2014
Publication title -
genetic epidemiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.301
H-Index - 98
eISSN - 1098-2272
pISSN - 0741-0395
DOI - 10.1002/gepi.21840
Subject(s) - type i and type ii errors , covariate , kernel (algebra) , statistics , genetic association , score test , trait , minor allele frequency , mathematics , linear model , generalized linear model , statistical hypothesis testing , econometrics , computer science , allele , biology , allele frequency , genetics , gene , genotype , single nucleotide polymorphism , combinatorics , programming language
By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT‐O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT‐O. In practice, it is not known whether rare variants or common variants in a gene region are disease related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT‐O on real neural tube defects and Hirschsprung's disease datasets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT‐O in the real data analysis. Our methods can be used in either gene‐disease genome‐wide/exome‐wide association studies or candidate gene analyses.