z-logo
Premium
Recommended Joint and Meta‐Analysis Strategies for Case‐Control Association Testing of Single Low‐Count Variants
Author(s) -
Ma Clement,
Blackwell Tom,
Boehnke Michael,
Scott Laura J.
Publication year - 2013
Publication title -
genetic epidemiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.301
H-Index - 98
eISSN - 1098-2272
pISSN - 0741-0395
DOI - 10.1002/gepi.21742
Subject(s) - meta analysis , type i and type ii errors , logistic regression , statistics , firth , statistical power , score test , genetic association , association (psychology) , regression analysis , statistical hypothesis testing , mathematics , medicine , biology , genetics , psychology , oceanography , genotype , single nucleotide polymorphism , psychotherapist , gene , geology
In genome‐wide association studies of binary traits, investigators typically use logistic regression to test common variants for disease association within studies, and combine association results across studies using meta‐analysis. For common variants, logistic regression tests are well calibrated, and meta‐analysis of study‐specific association results is only slightly less powerful than joint analysis of the combined individual‐level data. In recent sequencing and dense chip based association studies, investigators increasingly test low‐frequency variants for disease association. In this paper, we seek to (1) identify the association test with maximal power among tests with well controlled type I error rate and (2) compare the relative power of joint and meta‐analysis tests. We use analytic calculation and simulation to compare the empirical type I error rate and power of four logistic regression based tests: Wald, score, likelihood ratio, and Firth bias‐corrected. We demonstrate for low‐count variants (roughly minor allele count [MAC] < 400) that: (1) for joint analysis, the Firth test has the best combination of type I error and power; (2) for meta‐analysis of balanced studies (equal numbers of cases and controls), the score test is best, but is less powerful than Firth test based joint analysis; and (3) for meta‐analysis of sufficiently unbalanced studies, all four tests can be anti‐conservative, particularly the score test. We also establish MAC as the key parameter determining test calibration for joint and meta‐analysis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here