Premium
Pathway‐Based Approaches for Sequencing‐Based Genome‐Wide Association Studies
Author(s) -
Wu Guodong,
Zhi Degui
Publication year - 2013
Publication title -
genetic epidemiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.301
H-Index - 98
eISSN - 1098-2272
pISSN - 0741-0395
DOI - 10.1002/gepi.21728
Subject(s) - genetic association , computational biology , genome wide association study , exome , genetic architecture , biology , context (archaeology) , genetics , exome sequencing , association test , gene , association mapping , quantitative trait locus , single nucleotide polymorphism , genotype , mutation , paleontology
For analyzing complex trait association with sequencing data, most current studies test aggregated effects of variants in a gene or genomic region. Although gene‐based tests have insufficient power even for moderately sized samples, pathway‐based analyses combine information across multiple genes in biological pathways and may offer additional insight. However, most existing pathway association methods are originally designed for genome‐wide association studies, and are not comprehensively evaluated for sequencing data. Moreover, region‐based rare variant association methods, although potentially applicable to pathway‐based analysis by extending their region definition to gene sets, have never been rigorously tested. In the context of exome‐based studies, we use simulated and real datasets to evaluate pathway‐based association tests. Our simulation strategy adopts a genome‐wide genetic model that distributes total genetic effects hierarchically into pathways, genes, and individual variants, allowing the evaluation of pathway‐based methods with realistic quantifiable assumptions on the underlying genetic architectures. The results show that, although no single pathway‐based association method offers superior performance in all simulated scenarios, a modification of Gene Set Enrichment Analysis approach using statistics from single‐marker tests without gene‐level collapsing (weighted Kolmogrov‐Smirnov [WKS]‐Variant method) is consistently powerful. Interestingly, directly applying rare variant association tests (e.g., sequence kernel association test) to pathway analysis offers a similar power, but its results are sensitive to assumptions of genetic architecture. We applied pathway association analysis to an exome‐sequencing data of the chronic obstructive pulmonary disease, and found that the WKS‐Variant method confirms associated genes previously published.