z-logo
Premium
Semiparametric variance‐component models for linkage and association analyses of censored trait data
Author(s) -
Diao G.,
Lin D.Y.
Publication year - 2006
Publication title -
genetic epidemiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.301
H-Index - 98
eISSN - 1098-2272
pISSN - 0741-0395
DOI - 10.1002/gepi.20168
Subject(s) - censoring (clinical trials) , trait , statistics , quantitative trait locus , estimator , linkage (software) , pedigree chart , econometrics , mathematics , computer science , biology , genetics , gene , programming language
Variance‐component (VC) models are widely used for linkage and association mapping of quantitative trait loci in general human pedigrees. Traditional VC methods assume that the trait values within a family follow a multivariate normal distribution and are fully observed. These assumptions are violated if the trait data contain censored observations. When the trait pertains to age at onset of disease, censoring is inevitable because of loss to follow‐up and limited study duration. Censoring also arises when the trait assay cannot detect values below (or above) certain thresholds. The latent trait values tend to have a complex distribution. Applying traditional VC methods to censored trait data would inflate type I error and reduce power. We present valid and powerful methods for the linkage and association analyses of censored trait data. Our methods are based on a novel class of semiparametric VC models, which allows an arbitrary distribution for the latent trait values. We construct appropriate likelihood for the observed data, which may contain left or right censored observations. The maximum likelihood estimators are approximately unbiased, normally distributed, and statistically efficient. We develop stable and efficient numerical algorithms to implement the corresponding inference procedures. Extensive simulation studies demonstrate that the proposed methods outperform the existing ones in practical situations. We provide an application to the age at onset of alcohol dependence data from the Collaborative Study on the Genetics of Alcoholism. A computer program is freely available. Genet. Epidemiol . 2006. © 2006 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here