Premium
Two common polymorphisms in the APO A‐IV coding gene: Their evolution and linkage disequilibrium
Author(s) -
Ilyas kamboh M.,
Hamman Richard F.,
Ferrell Robert E.,
Mulvihill John J.
Publication year - 1992
Publication title -
genetic epidemiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.301
H-Index - 98
eISSN - 1098-2272
pISSN - 0741-0395
DOI - 10.1002/gepi.1370090503
Subject(s) - genetics , linkage disequilibrium , biology , allele , loss of heterozygosity , haplotype , coding region , allele frequency , genotype , microbiology and biotechnology , gene
Human apolipoprotein A‐IV (APO A‐IV) exhibits a common protein polymorphism detectable by isoelectric focusing (IEF) due to a single base substitution at codon 360 which replaces the frequently occurring glutamine residue (allele 1) with histidine (allele 2). Recently, sequence analysis of the APO A‐IV coding region has revealed another common nucleotide substitution at codon 347 which converts the commonly present threonine residue (allele A) into serine (allele T). In order to investigate the extent of genetic variation at codon 347, we screened DNA samples from 192 unrelated individuals using a polymerase chain reaction based assay. The frequencies of the two alleles, A‐IV*A and A‐IV*T , were 0.81 and 0.19, respectively, with average heterozygosity 0.31. Genetic screening of the corresponding 192 plasma samples by IEF gave frequencies of 0.922 and 0.078 for the A‐IV*1 and A‐IV*2 alleles, respectively, at codon 360 with average heterozygosity 0.14. Genotype data at the two polymorphic sites were used to assign unequivocal haplotypes to all the 384 chromosomes. Of the expected four haplotypes (A1, T1, A2, and T2) only three were observed and their frequencies were 0.732 for A1, 0.190 for T1 and 0.078 for A2, with average heterozygosity 0.42. Although our data indicate significant linkage disequilibrium between the two sites (χ 1 2= 7.65, P >0.006, standardized disequilibrium constant ψ = −0.14) the degree of nonrandom association varied between alleles at the two sites. Based upon allele frequency data and variable linkage disequilibrium between alleles, we propose that the A2 and T1 haplotypes may have evolved from the parental A1 haplotype by two independent mutations. © 1992 Wiley‐Liss, Inc.