z-logo
Premium
Mouse zinc transporter 1 gene provides an essential function during early embryonic development
Author(s) -
Andrews Glen K.,
Wang Haibin,
Dey S.K.,
Palmiter Richard D.
Publication year - 2004
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/gene.20067
Subject(s) - embryo , biology , embryonic stem cell , embryogenesis , zinc deficiency (plant disorder) , knockout mouse , zinc , in utero , microbiology and biotechnology , pregnancy , fetus , transporter , genetics , gene , andrology , medicine , chemistry , organic chemistry
The SLC30 family of cation diffusion transporters includes at least nine members in mammals, most of which have been documented to play a role in zinc transport. The founding member of this family, Znt1, was discovered by virtue of its ability to efflux zinc from cells and to protect them from zinc toxicity. However, its physiological functions remain unknown. To address this issue, mice with targeted knockout of the Znt1 gene were generated by homologous recombination in embryonic stem cells. Heterozygous Znt1 mice were viable. In contrast, homozygous Znt1 mice died in utero soon after implantation due to a catastrophic failure of embryonic development. Although extraembryonic membranes formed around these embryos, the embryo proper failed to undergo morphogenesis past the egg cylinder stage and was amorphous by d9 of pregnancy. Expression of the Znt1 gene was detected predominantly in trophoblasts and in the maternal deciduum during the postimplantation period (d5 to d8). The failure of homozygous Znt1 embryos to develop could not be rescued by manipulating maternal dietary zinc (either excess or deficiency) during pregnancy. However, embryos in Znt1 heterozygous females were ∼3 times more likely to develop abnormally when exposed to maternal dietary zinc deficiency during later pregnancy than were those in wildtype females. These studies suggest that Znt1 serves an essential function of transporting maternal zinc into the embryonic environment during the egg cylinder stage of development, and further suggest that Znt1 plays a role in zinc homeostasis in adult mice. genesis 40:74–81, 2004. © 2004 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here