Premium
A micromorphological analysis of stratigraphic integrity and site formation at Cactus Hill, an Early Paleoindian and hypothesized pre‐Clovis occupation in south‐central Virginia, USA
Author(s) -
Macphail Richard I.,
McAvoy Joseph M.
Publication year - 2008
Publication title -
geoarchaeology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 44
eISSN - 1520-6548
pISSN - 0883-6353
DOI - 10.1002/gea.20234
Subject(s) - geology , bioturbation , stratigraphy , sedimentary depositional environment , paleontology , sedimentology , soil mesofauna , archaeology , sediment , soil biology , soil water , structural basin , geography , tectonics , soil science
Twenty thin sections were studied from Cactus Hill, a ca. 20 ka stratified sand dune site in Virginia, USA, with a Clovis and hypothesized pre‐Clovis component. The high‐resolution soil micromorphology investigation focused on testing the integrity of Clovis and pre‐Clovis stratigraphy from one location where there is a high density of artifacts. Site formation processes were dominated by eolian (dune) sand formation. There was also ephemeral topsoil development and associated occupation, along with their penecontemporaneous disturbance and dispersal by scavenging animals (assumed) and localized down‐working by small invertebrate mesofauna (as evidenced by aggregates of fine phytolith‐rich humic soil and fine soil‐coated charcoal fragments). Partial erosion of these occupation soils (deflation?) was followed by successive sand burial. Post‐depositional processes affecting these sand‐buried occupations involved only small‐scale bioturbation and overprinting of clay lamellae, suggesting site stratigraphy has been stable for a long time. Soil micromorphological analysis has defined a difference between occupational units (pre‐Clovis and Clovis) and sterile units found between these units as well as above and below. In summary, according to this analysis, the site appears intact with only minor disturbances affecting the long‐term integrity of the stratigraphy. © 2008 Wiley Periodicals, Inc.