Premium
Wadi Bakht revisited: Holocene climate change and prehistoric occupation in the Gilf Kebir region of the Eastern Sahara, SW Egypt
Author(s) -
Linstädter Jörg,
Kröpelin Stefan
Publication year - 2004
Publication title -
geoarchaeology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 44
eISSN - 1520-6548
pISSN - 0883-6353
DOI - 10.1002/gea.20023
Subject(s) - holocene , pluvial , plateau (mathematics) , climate change , arid , prehistory , monsoon , wadi , physical geography , precipitation , geography , quaternary , geology , climatology , archaeology , oceanography , paleontology , mathematical analysis , mathematics , meteorology
Abstract Geoarchaeological and chronological evidence from the remote Gilf Kebir Plateau in southwest Egypt suggests a new model for the influence of early and mid‐Holocene precipitation regimes on land‐use strategies of prehistoric settlers in what is now the center of the largest hyperarid area on earth. We hypothesize that the quantitatively higher, daytime, monsoon summer rainfall characteristic of the early Holocene (9300–5400 14 C yr B.P./8400–4300 yr B.C.) resulted in less grass growth on the plateau compared to the winter rains that presumably fell in the cool nights during the terminal phase of the Holocene pluvial (5400–4500 yr B.P./4300–3300 yr B.C.). The unparalleled climatic transition at 5400 yr B.P. (4300 yr B.C.) caused a fundamental environmental change that resulted in different patterns of human behavior, economy, and land use in the canyon‐like valleys and on the plains surrounding the plateau. The model emphasizes the crucial impact of seasonal rainfall distribution on cultural landscapes in arid regions and the lower significance of annual precipitation rates, with implications for future numeric climate models. It also serves as an example of how past climate changes have affected human societies. © 2004 Wiley Periodicals, Inc.