Premium
The major‐ and trace‐element whole‐rock fingerprints of Egyptian basalts and the provenance of Egyptian artefacts
Author(s) -
Greenough John D.,
Gorton M. P.,
MalloryGreenough Leanne M.
Publication year - 2001
Publication title -
geoarchaeology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 44
eISSN - 1520-6548
pISSN - 0883-6353
DOI - 10.1002/gea.1019
Subject(s) - bedrock , provenance , basalt , trace element , geology , mineral , geochemistry , mineralogy , geomorphology , materials science , metallurgy
Discrimination diagrams have been developed that source Egyptian basaltic artefacts using whole‐rock major element geochemistry. These include K 2 O versus SiO 2 , TiO 2 and P 2 O 5 against MgO/Fe 2 O 3 t (total Fe as Fe 2 O 3 ), and a discriminant analysis diagram using SiO 2 , Fe 2 O 3 t , CaO, and MnO. A complementary set of diagrams uses easily obtained trace element data (Nb/Y versus Zr/Nb; Zr [ppm] versus Rb/Sr; TiO 2 [wt % volatile free] versus V; and Cr [ppm] versus Zr/Y) to determine the bedrock sources. These diagrams have been applied to seven First Dynasty basalt vessels (Abydos), two Fourth Dynasty basalt paving stones (Khufu's funerary temple, Giza), and two Fifth Dynasty paving stones (Sahure's complex, Abu Sir). They show that the bedrock source for all the artefacts was the Haddadin flow in northern Egypt. Multidimensional scaling and cluster analysis applied to the whole‐rock data (major elements and trace elements together) and previously published mineral fingerprinting studies confirm these results. Comparing mineral versus whole‐rock fingerprinting techniques, a major advantage of the former is the small sample size required (0.001 g compared to ≥ 0.1 g). Analytical costs are similar for both methods assuming that a comparison (bedrock) database can be assembled from the literature. For most archaeological problems, a whole‐rock bedrock database is more likely to exist than a mineral database, and whole‐rock analyses on artefacts will generally be easier to obtain than mineral analyses. Whole‐rock fingerprinting may be more sensitive than mineral‐based fingerprinting. Thus, if sample quantity is not an issue, whole‐rock analysis may have a slight cost, convenience, and technical advantage over mineral‐based methods. Our results also emphasize that the Egyptians cherished their Haddadin basalt flow and used it extensively and exclusively for manufacturing basalt vessels and paving stones for at least 600 years (∼3150 B.C. to 2500 B.C., approximate ages of the vessels and Abu Sir paving stones, respectively). © 2001 John Wiley & Sons, Inc.