z-logo
Premium
The microstratigraphic record of abrupt climate changes in cave sediments of the Western Mediterranean
Author(s) -
Courty MarieAgnès,
Vallverdu Josep
Publication year - 2001
Publication title -
geoarchaeology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 44
eISSN - 1520-6548
pISSN - 0883-6353
DOI - 10.1002/gea.1002
Subject(s) - cave , geology , holocene , paleosol , pleistocene , period (music) , paleontology , aeolian processes , mediterranean climate , stalagmite , sedimentary rock , radiocarbon dating , sediment , carbonate , stadial , loess , archaeology , geography , physics , materials science , acoustics , metallurgy
The purpose of this paper is to illustrate how calcareous sediments from Pleistocene and Holocene rockshelters and open caves of the Western Mediterranean can provide a stratigraphic record of abrupt climate change. The method proposed here is based on microstratigraphic examination of sedimentary sequences using microscopic techniques. The most important processes for characterizing the sensitivity of each cave to climate variables are: (1) the modes and rate of carbonate sediment production, (2) the nature and intensity of the pedogenic processes responsible for the synchronous alteration of carbonate materials (either those derived from the cave walls or those deposited on the ground surface), and (3) the supply of allogenic sediments, particularly by eolian activity. The cave sediment sequences presented record the marked coolings known as Dansgaard‐Oeschger stadials and Heinrich events that occurred during the Pleistocene and the Holocene, as demonstrated by the high resolution records from ice and deep sea cores. At Abric Romanì in northeastern Spain, a series of sharp climatic deteriorations of increasing severity is shown to have occurred synchronously with the transition from the Middle to the Upper Paleolithic, with a period of seasonal frost and strong winds at ca. 37,000 yr B.P., tentatively correlated with Heinrich event 4. At Pigeon Cave, Taforalt (northern Morocco), the transition from the Aterian to Ibero‐Maurusian/Epipalaeolithic cultures is dated to around 24,000–20,000 yr B.P. and is punctuated by a series of short cold pulses with evidence for seasonal freezing, soil erosion, and minimal evapotranspiration. In El Miron cave in north‐central Spain, the exceptional nature of the Younger Dryas cooling produced a marked destabilization of the cave walls and roof. At El Miron, the stratigraphic evidence for sediment removal due to the rapid percolation of snow melt under a degraded soil cover allows us to reconstruct the nature of the negative excursion at ca. 8200 yr B.P. This example also illustrates how climate‐controlled pedogenic processes can create a stratigraphic signature which has often been confused with a sedimentary hiatus. We conclude that cave sediments provide a valuable record of Pleistocene and Holocene climate changes. In appropriate contexts, these sequences allow us to examine the ecological stress generated by these unique global events at a local and regional level and improve our understanding of the complex anthropological processes that occurred at the same time. © 2001 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here