z-logo
open-access-imgOpen Access
Solar Energy Harvesting using Candle‐Soot‐Coated Thermoelectric Materials
Author(s) -
Yadav Deepshikha,
Azad Puneet,
Vaish Rahul
Publication year - 2020
Publication title -
global challenges
Language(s) - English
Resource type - Journals
ISSN - 2056-6646
DOI - 10.1002/gch2.201900080
Subject(s) - thermoelectric generator , materials science , thermoelectric effect , coating , optoelectronics , energy harvesting , solar energy , fresnel lens , voltage , maximum power principle , photovoltaic system , power (physics) , electrical engineering , composite material , optics , lens (geology) , engineering , physics , quantum mechanics , thermodynamics
This article reports the thermoelectric‐based solar energy harvesting. The effect of candle soot (CS) coating on solar energy harvesting potential of thermoelectric modules is studied. To compare the performance, uncoated/coated modules are exposed to solar radiations (through Fresnel lens) and the other side is kept at lower temperature using continuous water flow. Substantial enhancements in electrical outputs are observed due to CS coating on the upper surface of the thermoelectric module. The open‐circuit voltage and short‐circuit current across coated module improve more than six times in comparison to the uncoated module with maximum voltage and current reaching up to 1.5 V and 14 mA. Similarly, the generator can deliver a maximum power of 10 mW across a resistance of 50 Ω. Results indicate that the CS coating is an effective technique to improve the performance of thermoelectric materials for running sensors and other low‐power electronic devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here