z-logo
Premium
Combined classical cytogenetics and microarray‐based genomic copy number analysis reveal frequent 3;5 rearrangements in clear cell renal cell carcinoma
Author(s) -
Pei Jianming,
Feder Madelyn M.,
AlSaleem Tahseen,
Liu Zemin,
Liu Angen,
Hudes Gary R.,
Uzzo Robert G.,
Testa Joseph R.
Publication year - 2010
Publication title -
genes, chromosomes and cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.754
H-Index - 119
eISSN - 1098-2264
pISSN - 1045-2257
DOI - 10.1002/gcc.20771
Subject(s) - biology , comparative genomic hybridization , uniparental disomy , snp array , genetics , copy number analysis , cytogenetics , copy number variation , karyotype , locus (genetics) , loss of heterozygosity , gene duplication , chromosome , cancer research , single nucleotide polymorphism , genome , gene , genotype , allele
Karyotypic analysis and genomic copy number analysis with single nucleotide polymorphism (SNP)‐based microarrays were compared with regard to the detection of recurrent genomic imbalances in 20 clear cell renal cell carcinomas (ccRCCs). Genomic imbalances were identified in 19 of 20 tumors by DNA copy number analysis and in 15 tumors by classical cytogenetics. A statistically significant correlation was observed between the number of genomic imbalances and tumor stage. The most common genomic imbalances were loss of 3p and gain of 5q. Other recurrent genomic imbalances seen in at least 15% of tumors included losses of 1p32.3‐p33, 6q23.1‐qter and 14q and gain of chromosome 7. The SNP‐based arrays revealed losses of 3p in 16 of 20 tumors, with the highest frequency being at 3p21.31‐p22.1 and 3p24.3‐p25.3, the latter encompassing the VHL locus. One other tumor showed uniparental disomy of chromosome 3. Thus, altogether loss of 3p was identified in 17 of 20 (85%) cases. Fourteen tumors showed both overlapping losses of 3p and overlapping gains of 5q, and the karyotypic assessment performed in parallel revealed that these imbalances arose via unbalanced 3;5 translocations. Among the latter, there were common regions of loss at 3p21.3‐pter and gain at 5q34‐qter. These data suggest that DNA copy number analysis will supplant karyotypic analysis of tumor types such as ccRCC that are characterized by recurrent genomic imbalances, rather than balanced rearrangements. These findings also suggest that the 5q duplication/3p deficiency resulting from unbalanced 3;5 translocations conveys a proliferative advantage of particular importance in ccRCC tumorigenesis. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here